o
    ˷e$                     @   sH   d Z ddlZg dZdddZdddZdd	d
Zdd ZdddZdS )z 
Eigenvalue spectrum of graphs.
    N)laplacian_spectrumadjacency_spectrummodularity_spectrumnormalized_laplacian_spectrumbethe_hessian_spectrumweightc                 C   *   ddl }ddl}|jtj| |d S )a  Returns eigenvalues of the Laplacian of G

    Parameters
    ----------
    G : graph
       A NetworkX graph

    weight : string or None, optional (default='weight')
       The edge data key used to compute each value in the matrix.
       If None, then each edge has weight 1.

    Returns
    -------
    evals : NumPy array
      Eigenvalues

    Notes
    -----
    For MultiGraph/MultiDiGraph, the edges weights are summed.
    See to_numpy_array for other options.

    See Also
    --------
    laplacian_matrix
    r   Nr   )scipyscipy.linalglinalgeigvalshnxlaplacian_matrixtodenseGr   spr
    r   O/var/www/ideatree/venv/lib/python3.10/site-packages/networkx/linalg/spectrum.pyr         r   c                 C   r   )a#  Return eigenvalues of the normalized Laplacian of G

    Parameters
    ----------
    G : graph
       A NetworkX graph

    weight : string or None, optional (default='weight')
       The edge data key used to compute each value in the matrix.
       If None, then each edge has weight 1.

    Returns
    -------
    evals : NumPy array
      Eigenvalues

    Notes
    -----
    For MultiGraph/MultiDiGraph, the edges weights are summed.
    See to_numpy_array for other options.

    See Also
    --------
    normalized_laplacian_matrix
    r   Nr	   )r
   r   r   r   r   normalized_laplacian_matrixr   r   r   r   r   r   /   s
   r   c                 C   r   )a  Returns eigenvalues of the adjacency matrix of G.

    Parameters
    ----------
    G : graph
       A NetworkX graph

    weight : string or None, optional (default='weight')
       The edge data key used to compute each value in the matrix.
       If None, then each edge has weight 1.

    Returns
    -------
    evals : NumPy array
      Eigenvalues

    Notes
    -----
    For MultiGraph/MultiDiGraph, the edges weights are summed.
    See to_numpy_array for other options.

    See Also
    --------
    adjacency_matrix
    r   Nr	   )r
   r   r   eigvalsr   adjacency_matrixr   r   r   r   r   r   Q   r   r   c                 C   s<   ddl }ddl}|  r|jt| S |jt| S )a  Returns eigenvalues of the modularity matrix of G.

    Parameters
    ----------
    G : Graph
       A NetworkX Graph or DiGraph

    Returns
    -------
    evals : NumPy array
      Eigenvalues

    See Also
    --------
    modularity_matrix

    References
    ----------
    .. [1] M. E. J. Newman, "Modularity and community structure in networks",
       Proc. Natl. Acad. Sci. USA, vol. 103, pp. 8577-8582, 2006.
    r   N)r
   r   is_directedr   r   r   directed_modularity_matrixmodularity_matrix)r   r   r
   r   r   r   r   q   s
   r   c                 C   s(   ddl }ddl}|jt| | S )u  Returns eigenvalues of the Bethe Hessian matrix of G.

    Parameters
    ----------
    G : Graph
       A NetworkX Graph or DiGraph

    r : float
       Regularizer parameter

    Returns
    -------
    evals : NumPy array
      Eigenvalues

    See Also
    --------
    bethe_hessian_matrix

    References
    ----------
    .. [1] A. Saade, F. Krzakala and L. Zdeborová
       "Spectral clustering of graphs with the bethe hessian",
       Advances in Neural Information Processing Systems. 2014.
    r   N)r
   r   r   r   r   bethe_hessian_matrixr   )r   rr   r
   r   r   r   r      s   r   r	   )N)	__doc__networkxr   __all__r   r   r   r   r   r   r   r   r   <module>   s    
	
 
" 